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INTRODUCTION 
 
Other than agents targeting androgen receptor (AR) signaling, molecularly targeted agents have so far demonstrated 
limited clinical benefit in patients with castration resistant prostate cancer (CRPC).  Specifically, therapeutic targets 
involving signaling pathways that augment or bypass AR signaling, which could be targeted either in conjunction with or 
upon progression from novel hormonal therapies, have yet to be fully characterized.  We have performed a high 
throughput, in vivo genetic screen to identify kinases that permitted androgen-dependent transformed prostate epithelial 
cells (LHSR-AR cells) to form tumors in female animals.  In addition to known prostate cancer oncogenes and mediators 
of androgen independence (mutated KRAS, constitutively active MEK, RAF1, ERBB2, AKT1, PIM1 and PIM2), 
overexpression of the Never In Mitosis A (NIMA) related kinase 6 (NEK6) reproducibly yielded androgen-independent 
tumors.  NEK6 can confer castration resistance to established tumors in male mice, and inactivating its expression can 
restore sensitivity to castration. Castration-resistant tumors generated through NEK6 overexpression are predominantly 
squamous in histology and AR-negative, and NEK6 does not activate AR signaling.  NEK6 overexpression leads to 
increased phosphorylation of two putative substrates from the literature, RPS6KB1 and SGK1, along with novel substrates 
identified through phosphoproteomic analysis, including FOXJ2, HUWE1 (ARF-BP1), and NCOA5.  NEK6 
overexpression also leads to phosphorylation of two additional forkhead-box proteins, FOXO3 and FOXA1, at proline-
directed (S-P) motifs.  Of the tested substrates, FOXJ2, RPS6KB1 and SGK1 are essential for NEK6-mediated androgen-
independent tumor formation.  NEK6 is located on a region of recurrent copy number gain on chromosome 9q33.3 in 
human prostate cancer; preliminary analysis of the TCGA data set reveals that NEK6 amplification or overexpression 
predicts for poorer outcomes, and NEK6 overexpression by immunohistochemistry in microarrays of primary tumors 
correlates with future development of castration-resistant disease in patients. NEK6 and its downstream effectors are thus 
potential novel therapeutic targets in CRPC. 
 
BODY 
 
Background 
 

Prostate cancer is the second most common cause of cancer death in men, and the majority of these deaths occur 
in patients with metastatic castration-resistant prostate cancer (CRPC).  Clinical responses to novel agents that decrease 
circulating androgens to below castrate levels (abiraterone – Attard et al., 2009) and more potent antagonists of the 
androgen receptor (enzalutamide – Tran et al., 2009) demonstrate that the androgen receptor (AR) signaling pathway 
remains critical in CRPC.  However, many patients do not respond to these therapies, suggesting that alternative 
mechanisms for AR signaling, or other pathways for tumor survival and growth, are activated in their cancer cells.  
Constitutive activation of kinases such as ERBB2, MAPK, PI3K/Akt, and Src (Edwards and Bartlett, 2005b) have been 
implicated in mediating castration resistance both by leading to phosphorylation of AR to promote its stabilization and 
activation (Lin et al., 2001; Yeh et al., 1999; Guo et al., 2006), and by potentially bypassing the need for AR signaling for 
tumor cell survival (Pienta and Bradley, 2006).  However, inhibitors of many of these kinases have failed to demonstrate 
significant clinical benefit, such as in phase II trials of the Src inhibitor dasatinib (Yu et al., 2009) and the ERBB2 
inhibitor lapatinib (Whang et al., 2011).  A novel agent targeting MET and VEGFR2, cabozantinib, has demonstrated 
important clinical activity in metastatic CRPC (Smith et al., 2013), though the relevant target substrates remain unclear as 
this agent has promiscuous in vitro activity. 

 
A number of recent studies have demonstrated the complementarity and crosstalk between kinase signaling 

pathways and AR signaling.  Mendiratta, et al. (2009) developed a gene expression signature of AR signaling, and found 
that decreased predicted AR activity in patient samples correlated with increased predicted Src activity.  Drake, et al. 
(2012) demonstrated increased tyrosine phosphorylation in tumor samples from patients with CRPC; phosphotyrosine 
analysis by mass spectrometry in castration-resistant carcinomas derived from a genetically engineered mouse model 
identified oncogene-specific tyrosine kinase signatures, including activation of EGFR, ephrin type-A receptor 2 (EPHA2), 
and JAK2, along with ABL1 and SRC tyrosine kinase activation.  Carver, et al. (2011) and Mulholland, et al. (2011) 
demonstrated cross-regulation through reciprocal feedback between the AR and PTEN/PI3K signaling pathways, 
suggesting combined AR and PI3K pathway inhibition as a therapeutic strategy in CRPC.   

 
We hypothesize that novel signaling pathways may be involved in conferring castrate resistance, and given that 

kinases usually act as transducers of growth and proliferation signals, we hypothesize more specifically that 
activated/amplified kinases play a role in the development of castration resistance.  We have thus performed an in vivo 



 

5 
 

functional genomic screen to identify novel pathways that may be involved and likely serve as therapeutic targets in these 
patients.    
 

Previous work in our laboratory (Berger et al., 2004) demonstrated that primary prostate epithelial cells (PrECs) 
that are rendered tumorigenic by the expression of the SV40 large T and small t antigens, the catalytic subunit of 
telomerase (hTERT), H-Ras, and the androgen receptor (LHSR-AR cells) form well-differentiated tumors in mice.  These 
tumors are androgen-dependent and are thus unable to grow in female or castrated mice.  I have performed a high 
throughput, in vivo genetic screen to identify kinases that permitted these cells to form tumors in female animals. A 
lentivirally delivered kinase ORF library encompassing 601 kinases and other oncogenes was introduced into these cells 
in pools of 9-10, and I identified fourteen ORF integrants that allowed for the androgen-independent development of 
subcutaneous tumors by PCR using vector specific primers (Table 1).  Using the same ORF library, I performed an in 
vitro screen for genes conferring androgen-independent proliferation to androgen dependent LNCaP cells and identified 
13 genes that significantly (>2 standard deviations from median) increased proliferation in androgen-deprived conditions 
(Table 1).  

 
The 24 total candidates identified from both screens were introduced into LHSR-AR cells individually and 

injected into 6 subcutaneous sites of female BALB/C nude mice for validation of androgen-independent tumor formation. 
Among the candidates that reproducibly yield androgen-independent tumors are mutated KRAS; RAF1, which is 
recurrently translocated (Palanisamy et al. 2010) and amplified (Taylor et al., 2010) in advanced prostate cancer; ERBB2, 
AKT1, and constitutively active MEK1, which have been implicated in androgen independence (Edwards and Bartlett, 
2005a); and PIM1 and PIM2, which have previously been demonstrated to be important oncogenes in prostate cancer 
(Brault et al., 2010).  Among the strongest candidates identified to confer androgen independence in this assay are the 
Never In Mitosis A (NIMA) related kinase 6 (NEK6), and nemo-like kinase (NLK).   

 
Aim 1. Elucidating the role of NIMA-related kinase 6 (NEK6) and nemo-like kinase (NLK) as mediators of castrate-
resistant prostate cancer and assessing their potential as therapeutic targets. 
 
Milestone 1: Determine whether NEK6 and NLK can confer castrate resistance to established tumors, 
whether kinase activity is required, and whether their continued expression is required. 

 
In additional validation, NEK6 expression reproducibly and robustly yielded androgen-independent tumors, but 

tumor formation mediated by NLK was less robust.  In addition, there is minimal evidence for alterations of NLK in 
human prostate cancer, so I have focused my studies on NEK6.  NEK6 is overexpressed in several malignant tissues and 
cell lines, and has been previously been implicated in cell transformation (Jeon et al., 2010; Nassirpour et al., 2010).  
However, the mechanistic basis of its transformation phenotype and the tumor type(s) in which its activity is most relevant 
remain unclear.  In human 
prostate cancer, the region 
encompassing NEK6 at 
chromosome 9q33.3 is present in 
a region of recurrent copy number 
gain (Taylor et al., 2010; Huang et 
al., 2012; Grasso et al., 2012) 
without a known validated 
prostate cancer oncogene, 
suggesting a possible role in 
prostate cancer pathogenesis. 

 
In addition to conferring 

tumor formation in female mice, 
overexpression of NEK6 in 
LHSR-AR cells can also lead to 
tumor formation in castrated mice, 
which lack circulating androgens 
since mice do not synthesize 
androgens from their adrenal 
glands (Figure 1A).  The tumors 
in castrated mice are generally 

Table 1.  Results of in vivo and in vitro screens for genes conferring androgen 
independence, and of in vivo validation. 

In vivo LHSR-AR screen In vitro LNCaP screen In vivo validation 

ORF 
# 

tumors 
ORF 

Fold 
proliferation 
(  median)b 

ORF 
# 

tumors 

KRASV12+MEKDDa 3/3 NLK 2.09 KRASV12 6/6 
ERBB2 3/3 CDK6 1.90 ERBB2 5/6 
NEK6 3/3 PIM1 1.72 NEK6 5/6 
RAF1 3/3 CDK4 1.55 NLK 4/6 
AKT1 1/3 PIM2 1.45 MEKDD 4/6 
BRD3+NEK8a 1/3 STK40 1.44 AKT1 3/6 
PIM2 1/3 RPS6KA2 1.40 RAF1 3/6 
GK 1/3 AGK 1.40 PIM1 3/6 
PFKP 1/3 TGFBR1 1.40 PIM2 1/6 
PRKG2 1/3 DAPK3 1.39 others 0/6 
TGFBR2 1/3 LOC389599 1.38   
PIM1 1/3 NEK5 1.37   
  AKT1 1.37   
a Two ORF integrants were amplified from these tumors 
b For reference, the synthetic androgen R1881 leads to median 2.06 fold 
proliferation 
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smaller and slower growing than those in female mice, suggesting that signaling mediated by androgens play a role in the 
growth of the tumors even though they are not essential for tumor formation.  To assess whether NEK6 could serve as a 
therapeutic target in established tumors where its activity is increased, we implanted cells with doxycycline-inducible 
expression of NEK6 (Figure 1B) in male mice with a testosterone pellet, and tumors were allowed to form in the presence 
of doxycycline in the diet.  After 35 days, the mice were castrated, testosterone pellets was removed, and doxycycline was 
either continued or withdrawn (5 mice = 15 tumors per group; mice that died perioperatively were excluded from the 
analysis).  As demonstrated in Figure 1C, at day 30 after castration, NEK6 confers resistance to castration compared to the 
parental cells when its expression is maintained with doxycycline (p=0.001), but sensitivity to castration is restored when 
doxycycline is withdrawn (p=0.049). 
 
 The kinase activity of NEK6 is required for conferring androgen independence, since expression of a kinase-dead 
form of NEK6 (K74M/K75M) did not lead to tumor formation in castrated mice (Figure 1D).  The activation by its 
upstream kinase NEK9 (Belham et al., 2003) appears to be required as mutation of the NEK9 phosphorylation site to 
alanine (S206A) led to decreased tumor formation.  A predicted activating mutation (Y108A) through disruption of an 
autoinhibitory motif by homology to NEK7 (Richards, et al., 2009), did not enhance tumor formation.  To determine 
domains of NEK6 required for conferring androgen independence, 7 mutant forms with deletions of 30-40 amino acids 
across the length of the protein were generated.  All deletions led to decreased tumor formation except deletion of amino 
acids 13-44, which seemed to increase tumor formation, thus demonstrating that the N-terminal is dispensable for the 
androgen independence phenotype. 
 
 Western blotting demonstrates increased NEK6 levels in several patient-derived prostate cancer cell lines 
compared with immortalized (RWPE, LH) and transformed (LHSR-AR) prostate epithelial cells (Figure 2A).  NEK6 
levels are relatively high in VCaP and LNCaP cells, suggesting that high expression of NEK6 is not sufficient to 
overcome the in vitro androgen dependence of these cells.  We are in the process of assessing the dependency of these cell 
lines on NEK6 expression by assaying viability after knockdown of NEK6 by shRNAs. 
 
Milestone 1: NEK6 can confer castrate resistance to established tumors, kinase activity is required, N-terminal is 
dispensable, and continued expression is required. 
 
Aim 2: Assessing signaling pathways involved in NEK6 and NLK-mediated castrate resistance and assessing their clinical 
relevance. 
 
Milestone 2: Determine whether AR and STAT3 are necessary to confer NEK6 and NLK-mediated castrate resistance 
 
Milestone 3: Determine impact of NEK6 and NLK on AR and STAT3 compared to other hits in the screen in vitro and in 
vivo 
 
 Given that persistence of AR signaling has been demonstrated to be an important mechanism of castration 
resistance, we sought to determine if NEK6 influences AR signaling.  The tumors formed due to NEK6 overexpression 
have regions of nuclear AR expression but the majority of these tumors are AR-negative (Figure 3A).  H&E staining 
demonstrates squamous differentiation in these tumors with the more mature differentiated regions demonstrating keratin 
deposition and AR loss.  Androgen-independent tumors derived from expression of the other kinases identified in the 
screen also have regions of AR-positivity and negativity that vary in proportion and intensity (Supplemental Table 1.)  
NEK6 overexpression does not lead to an increase in activity of an AR reporter based on the PSA enhancer in LNCaP 
cells (Figure 3B), and inducible overexpression of NEK6 in LHSR-AR cells (Figure 3C) does not lead to increased 
expression of the AR targets PSA and TMPRSS2 (Figure 3D).  An mRNA expression signature of NEK6 activity was 
generated from cells inducibly expressing wild-type vs. kinase dead NEK6 six hours after growth factor stimulation in 3 
biologic replicates collected on different days; gene expression was assayed on an Affymetrix GeneChip® Human Gene 
1.0 ST Array.  Gene set enrichment analysis (Subramanian et al., 2005) demonstrates that gene expression changes 
associated with NEK6 kinase activity do not correlate positively or negatively (Figure 3E) with two previously published 
signatures of AR activity (Hieronymus et al., 2006; Mendiratta et al., 2009). 
 
 Since NEK6 does not influence AR signaling positively or negatively, we investigated other phenotypes ascribed 
to NEK6 in the literature.  NEK6 has previously been described to play a role in the G2/M transition (Yin et al., 2003), 
and thus we assessed whether NEK6 overexpression can influence cell cycle progression.  The baseline cell cycle profile 
is identical for cells with inducible expression of NEK6 with and without doxycycline in normally cycling cells, cells 
starved in growth-factor free media, and in cells released into growth-factor containing media (Figure 4A).  NEK6 does 
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not increase proliferation rate of LHSR-AR cells in vitro compared to a lacZ control (Figure 4B).  Thus, the functional 
role of NEK6 overexpression in these cells does not appear to be related to cell cycle progression.  Another activity of 
NEK6 that has been implicated in its oncogenic activity is inhibition of p53-mediated senescence (Jee et al., 2010).  
LHSR-AR cells express large-T antigen, so the p53 pathway should be inactive in these cells.  To confirm this in our 
multiply infected LHSR-AR cells, they were exposed to etoposide at 10 μM for 18 hours or 50 μM for 4 hours: under 
neither condition is p21 expression induced, while the level of cleaved PARP is not altered by NEK6 expression (Figure 
4C).  Thus NEK6 does not act by modulating the p53 pathway, and NEK6 overexpression is not a non-specific mediator 
of cell survival. 
 
 Given that NEK6 does not seem to be functioning in this system through promotion of cell cycle progression, we 
sought to determine whether NEK6 may exert its effect through canonical oncogenic signaling pathways.  NEK6 purified 
from rat liver was found to be the major protein kinase that is active on the p70 S6 kinase (RPS6KB1) hydrophobic 
regulatory site, Thr412 (Belham et al., 2001).  Subsequently, it was demonstrated that NEK6 could phosphorylate 
hydrophobic motifs of RPS6KB1 as well as SGK1 in vitro (Lizcano et al., 2002).  However, in 293-T cells, forms of 
RPS6KB1 and SGK1 with mutation of the NEK6 recognition motif were phosphorylated equivalently to the wild-type 
forms upon stimulation by IGF-1.  Thus, NEK6 did not appear to be involved in these phosphorylation events in this 
specific in vivo context.  
 
 Levels of phosphorylated Thr412 of RPS6KB1 and Ser422 of SGK1 are not different in LHSR-AR cells 
overexpressing wild-type NEK6 as compared to a kinase-dead control in asynchronously cycling cells in complete media, 
or cells starved in growth-factor free media for 36 hours (Figure 5A).  However, cells overexpressing NEK6 had elevated 
levels of phosphorylation at these sites upon growth factor stimulation for 5 or 15 minutes compared to control.  The 
phosphorylation of AKT1 at Ser473 is decreased with NEK6 overexpression, suggesting potential feedback inhibition of 
AKT1 given activation of kinases downstream of AKT1.  ERK1/2 is also increased by NEK6 overexpression; however an 
increase of phosphorylation of STAT3 at Serine 727, which has been implicated in the transformation activity of NEK6 
previously (Jeon et al., 2010), was not detectable in our system using two different antibodies. 
 
 To assess whether NEK6 plays a role in cells with native high NEK6 levels not exogenously overexpressed, we 
suppressed NEK6 expression in DU145 cells using doxycycline-inducible shRNAs.  We growth factor starved and then 
stimulated these cells as for the LHSR-AR cells and found that knockdown of NEK6 decreased phosphorylation at Thr412 
and Ser422 of RPS6KB1 and SGK1, respectively (Figure 5B).  This suggests that these two proteins are bona fide in vivo 
substrates of NEK6 in this context. 
 
Milestones 2 and 3: NEK6 does not activate AR signaling and does not lead to detectable STAT3 phosphorylation 
in LHSR-AR.  Rather, NEK6 phosphorylates previously identified in vitro substrates RPS6KB1 and SGK1 in 
response to growth factor stimulation. 
 
Milestone 4: Generation of mRNA and phosphoproteomic signatures corresponding to androgen independence conferred 
by our hits, and comparison to androgen signaling and existing databases 
 
 To assess downstream signaling pathways activated by NEK6 overexpression, we utilized the R&D Systems 
Human Phospho-Kinase Antibody Array to compare with signaling mediated by overexpression of two other kinases 
identified in our initial screen involved in canonical oncogenic signaling pathways, AKT1 and RAF1.  Lysates were 
obtained from cells expressing doxycycline-inducible wild-type NEK6 and kinase-dead NEK6, along with AKT1 and 
RAF1, 1 hour after growth factor stimulation.  The patterns of downstream signaling were compared to kinase-dead 
NEK6 as a control.  The profile for wild-type NEK6 overexpression is nearly identical to that mediated by AKT1 
overexpression, except for a decrease in phosphorylation of AKT at Ser473 and Thr308 with NEK6 overexpression 
(Figure 5C).  Again, this suggests that NEK6 activates similar downstream signaling as AKT1 with feedback inhibition of 
AKT1 itself.  Phosphorylation of Thr412 of RPS6KB1 and Ser422 of SGK1 are not assayed in this array.  RAF1 
overexpression leads to some overlapping signal with wild-type NEK6 and AKT1, but not the same breadth of changes as 
the others. 
 
 To gain a more comprehensive understanding of the immediate signaling mediated by NEK6 expression and 
discover novel in vivo substrates, we collaborated with the Proteomics Platform at the Broad Institute of Harvard and MIT 
for phosphoproteomic analysis.  Constructs for the expression of wild-type and kinase-dead NEK6 under the control of a 
doxycycline-inducible promoter were introduced into LHSR-AR cells; phosphoproteomic profile of cells expressing wild-
type NEK6 induced by doxycycline were compared to those of cells cultured in the absence of doxycycline and cells 
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expressing kinase-dead NEK6 induced by doxycycline.  Cells were cultured in “light”, “medium”, and “heavy” medium 
for Stable Isotope Labeling by Amino acids in Cell culture (SILAC) for 7 days in 2 different permutations; they were 
growth factor starved for the final 30 hours and then growth factor stimulated for 5 minutes as in Figure 5A.  Lysates were 
then subjected to SCX-IMAC phosphorylation analysis and assayed by mass spectrometry. 
 

A total of 9418 phosphopeptides (8432 phosphoserine, 952 phosphothreonine, 34 phosphotyrosine) from 3401 
proteins were detected in this experiment.  59 phosphopeptides from 50 proteins were increased in both the wild-type 
induced vs. un-induced and wild-type vs. kinase dead comparison with a combined q value of <0.25 (Supplemental Table 
2).  The differentially phosphorylated proteins include a large number of transcriptional regulators, including the 
forkhead-box family proteins FOXO3 and FOXA1, and the phosphopeptides represent a variety of common 
phophorylation motifs as shown in Table 2.  Among these motifs are pS/pT-P, associated with MAPK/CDK/GSK3 
signaling, and R-X-R-X-X-pS/pT, associated with AKT and RSK (ribosomal S6-kinase) signaling.  However, these 
motifs are not overrepresented in the phosphopeptides enriched with wild-type NEK6 expression.  Immunoblotting with 
motif-specific antibodies for MAPK/CDK and AKT/RSK signaling demonstrates an increased intensity of only specific 
bands with NEK6 overexpression (Figure 6A), demonstrating that NEK6 is not a global activator of these signaling 
pathways. 

 
Table 2. Summary of phosphoproteomic data 
 L-X-X-pS/pT-

F/W/Y/M/L/I/V/R/K 
(NEK6 general 

consensus) 

L/F/W/Y-X-X-pS/pT-
F/W/Y/M/L/I/V/R/K 
(NEK6 acceptable) 

pS/pT-P 
(proline-
directed 
kinases) 

R-X-R-X-
X-pS/pT 
(AKT1 or 

RSK 
family) 

R-X-X-
pS/pT 
(CaMK 

consensus) 

pS/pT-D/E-
X-D/E 
(CK2 

consensus) 

Others 

Proteins with 
phosphopeptides 
meeting 
significance 
threshold 
(59 total 
phosphopeptides 
representing 50 
proteins) 

FOXJ2 
HUWE1 
NCOA5 
KRT18 

FOXJ2 
HUWE1 
NCOA5 
KRT18 
TRA2B  

(Y-X-X-pS-Y) 
HNRNPM 

(F-X-X-pS-F) 
HNRNPA2B1 
(F-X-X-pS-F) 

ZNF326  
(F-X-X-pS-Y) 

FOXO3 
TRPS1 
LMO7 
SATB2 
PAK6 
BCL6 

FOXA1 
KLF4 

ATXN1 
IRF2BP1 

RFX2 
HIVEP2 

KLF3 
Others 
(×13) 

SLC2A12 
FAM21C 
ATXN1 

SLC2A12 
FAM21C 
ATXN1 
ATM 

LMO7 
DROSHA 
PLEKHA6 

RIPK3  
MYOF 
EXPH5 
MLLT3 

ERCC5 
LIG1 

PBRM1 

16 
phosphopeptides 
representing 14 

proteins 
12 pS 
3 pT 
1 pY 

Enrichment 
(compared to all 
detected 
phosphopeptides) 

4/59 vs. 131/9362 
(p=0.0092 Fisher’s 

exact) 

8/59 vs. 186/9362 
(p=1.95×10

-5
) 

26/59 vs. 
4815/9434 

(p=NS) 

3/59  vs. 
434/9301 

(p=NS) 

11/59 vs. 
2239/9362 

(p=NS) 

3/59 vs. 
701/9417 

(p=NS) 

 

 
A canonical NEK6 motif (Vaz Meirelles et al., 2010) with leucine at the -3 position [L-X-X-pS/pT-

F/W/Y/M/L/I/V/R/K] is more frequently represented in the 59 significantly enriched phosphopeptides compared to all 
detected phosphopeptides (p=0.0092 Fisher’s exact); an “acceptable” NEK6 substrate motif [L/F/W/Y-X-X-pS/pT-
F/W/Y/M/L/I/V/R/K] is even more significantly enriched (p=1.95×10-5).  This suggests that this peptide sequence is a true 
description of the NEK6 phosphorylation motif, and that the 8 proteins with phosphopeptides of this form detected here 
(FOXJ2, HUWE1, NCOA5, KRT18, TRA2B, HNRNPM, HNRNPA2B1, ZNF326) are bona fide in vivo NEK6 
substrates. 
 
 To confirm whether detection of these phosphopeptides in cells is due to direct phosphorylation by NEK6, we 
assayed the kinase activity of commercially available recombinant enzyme on a subset of these proteins expressed with a 
C-terminal V5-tag.  We were able to confirm phosphorylation of two proteins identified in our phosphoproteomic 
experiment, FOXJ2 and NCOA5, with no phosphorylation of a lacZ control (Figure 6B).  Mutation of the phosphorylation 
sites of FOXJ2 and NCOA5 identified via mass spectrometry, Ser8 and Ser96 respectively, decreases the in vitro 
phosphorylation of these substrates, demonstrating the specificity of the kinase activity at these sites. 
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 To understand which of these substrates may play a role in NEK6-mediated androgen independent tumor 
formation, we designed constructs for inducible suppression of the expression of five putative substrates (two from the 
literature and three from Table 2) with two different short hairpin RNAs (Figure 7A).  LHSR-AR cells expressing NEK6 
and one of these inducible shRNAs were implanted into three subcutaneous sites of female nude mice fed doxycycline in 
their diet.  As expected, inducible expression of an shRNA targeting NEK6 itself dramatically decreased tumor formation 
as compared to a control shRNA targeting lacZ (Figure 7B).  In addition, suppression of FOXJ2, RPS6KB1 and SGK1 
also dramatically decreased tumor formation mediated by NEK6 overexpression, while knockdown of HUWE1 and 
NCOA5 did not.  We are in the process of determining if these mediators are also essential in androgen-independent 
tumor formation mediated by a different oncogene in our model, constitutively active MEK, which primarily signals 
through the MAP kinase pathway.  In addition, we are testing a pharmacologic inhibitor of SGK1 for inhibiting androgen-
independent tumor formation mediated by NEK6 overexpression. 
 
Milestone 4: mRNA expression signature of NEK6 activity demonstrates no positive or negative correlation with 
AR signaling.  Phosphoproteomic signature reveals novel substrates FOXJ2, HUWE1, NCOA5, KRT18, TRA2B, 
HNRNPM, HNRNPA2B1, ZNF326 along with phosphorylation of FOXO3 and FOXA1 at pS/pT-P sites.  NEK6 
substrates FOXJ2, RPS6KB1 and SGK1 are required for NEK6-mediated androgen independent tumor 
formation. 
 
Milestone 5: Determine evidence for NEK6 and NLK conferring castrate resistance in clinical samples and identify 
subsets of patients displaying genomic changes and expression signatures corresponding to resistance mediated through 
the activity of a particular gene/pathway. 
 
 To assess if high NEK6 expression is associated with more aggressive disease in patients, we assayed NEK6 
expression in tumor microarrays of primary localized prostate cancer.  Primary prostate cancer is a heterogeneous disease 
with a mixture of more and less malignant clones; we would hypothesize that foci of high NEK6 expression in primary 
tumors may represent more malignant clones and that patients with these foci would be more likely to develop castration-
resistant disease than patients without these foci.  The number of events (recurrences, development of 
metastatic/castration resistant disease) in this cohort is not large enough for separate training and validation sets; thus the 
threshold designating “high” NEK6 expression was set at a level best differentiating tumor and benign prostate tissue 
across the whole data set.  High NEK6 expression by IHC does not correlate with Gleason grade (Figure 8).  However, 
patients with high NEK6 levels have a higher incidence of development of metastatic disease and castration resistant 
disease (Figure 9A).  These patients also have inferior 5 year biochemical recurrence (BCR)-free survival (Figure 9B), 
though the difference between the Kaplan-Meier curves does not reach statistical significance in this data set (median time 
to BCR for NEK6 low=not reached, NEK6 high=10 months, p=0.09).  These findings are corroborated in the current 
provisional TCGA dataset available on the cBioPortal (http://www.cbioportal.org/public-portal/index.do) where cases 
demonstrating NEK6 amplification or overexpression have worse disease-free survival (log rank p = 0.0018) compared to 
other cases (Figure 9C).  These findings would need to be confirmed in larger multi-institutional cohorts to be validated as 
a clinically useful prognostic marker, but these findings suggest that high NEK6 expression is a marker of more 
aggressive disease.  The potent phenotype mediated by NEK6 overexpression in our model suggests a mechanistic 
relationship to the development of lethal disease in these patients. 
 

It remains unclear at this point whether de novo acquisition of NEK6 amplification or overexpression is a 
mechanism of development of castration resistance in advanced prostate cancer.  The strongest evidence for this would be 
detection of markers of overactive NEK6 signaling in metastatic CRPC in comparison to therapy-naïve samples, which 
per our model would be most likely to be detected in prostate cancers that have become AR-independent.  A recent study 
by Grasso et al (2012) genetically profiled 35 cases of CRPC in comparison to 59 cases of localized PrCa.  The primary 
difference in the genomic landscape in these two states was massive amplification of the AR in CRPC in comparison to 
the primary cases; there was no increase in amplitude of the region of copy number gain on 9q33.3 where NEK6 is 
located.  There was no evidence for enrichment in genetic markers of any other signaling pathways in CRPC cases, 
though this is likely due to the fact that these cases were collected at a time when many of the current novel hormonal 
therapies had not yet been in widespread use.  Efforts to genetically characterize larger numbers of CRPC cases, including 
those from patients who have progressed on novel hormonal therapies, are currently underway at DFCI 
(http://www.aacr.org/home/public--media/stand-up-to-cancer/su2c-dream-teams/su2c-pcf-dream-team-precision-therapy-
of-advanced-prostate-cancer.aspx).   
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Milestone 5: NEK6 overexpression in primary tumors predicts for more aggressive disease.  Efforts to characterize 
metastatic biopsies from patients with CRPC for sequencing and assessing gene expression are underway. 
 
KEY RESEARCH ACCOMPLISHMENTS 

 Identification of NEK6 as a novel mediator of castration resistance in an in vivo forward functional genomic 
screen. 

 Demonstration that kinase activity and continued expression of NEK6 is required for maintenance of castration 
resistance, suggesting its suitability as a therapeutic target. 

 Confirmation of previously identified in vitro substrates RPS6KB1 and SGK1 as bona fide in vivo substrates, and 
discovery of novel NEK6 substrates FOXJ2, HUWE1, NCOA5, KRT18, TRA2B, HNRNPM, HNRNPA2B1, 
ZNF326. 

 Demonstration that substrates FOXJ2, RPS6KB1 and SGK1 are required for NEK6-mediated androgen-
independent tumor formation. 

 Determination that high NEK6 expression in primary tumors predicts for more aggressive disease 
 
 
REPORTABLE OUTCOMES 
 
Research Investigations 
Choudhury AD, Lock YJ, Guney I, Pei T, Schinzel AC, Izzo F, Lis R, Stack EC, Nakabayashi M, Petrozziello G, Patel J, 
Jaffe JD, Kantoff PW, Loda M, Hahn WC. "An in vivo functional genomic screen identifies NEK6 as a novel mediator of 
castration resistance in prostate cancer.” (manuscript in progress) 
 
Reviews 
Choudhury AD, Eeles R, Freedland SJ, Isaacs WB, Pomerantz MM, Schalken JA, Tammela TL, Visakorpi T. "The 
role of genetic markers in the management of prostate cancer." Eur Urol. 2012 Oct;62(4):577-87. 
 
Choudhury AD, Kantoff PW. “New Agents in Metastatic Prostate Cancer”. J Natl Compr Canc Netw. 2012 Nov 
1;10(11):1403-9.  
 
Abstracts, Poster Presentations and Exhibits Presented at Professional Meetings 
 
Abstracts 
Choudhury AD, Guney I, Schinzel AC, Izzo F, Hahn WC. "Molecular Determinants of Hormone Refractory Prostate 
Cancer." 18th Annual Prostate Cancer Foundation Scientific Retreat, September 21, 2011, Young Investigator 
Presentation. 
 
Poster Presentations 
Choudhury AD, Guney I, Schinzel AC, Izzo F, Stack EC, Nakabayashi M, Petrozziello G, Hahn WC. "Molecular 
Determinants of Hormone Refractory Prostate Cancer." 5th Annual Multi-institutional Prostate Cancer Program Retreat, 
March 19-21, 2012.  Poster selected for presentation and awarded as a prize winner. 
 
Choudhury AD, Guney I, Schinzel AC, Izzo F, Stack EC, Nakabayashi M, Petrozziello G, Hahn WC. "Molecular 
Determinants of Hormone Refractory Prostate Cancer." Dana-Farber Cancer Institute Molecular and Cellular Oncology 
Department Retreat.  April 9, 2012. 
 
CONCLUSIONS 
 

While there has been significant recent progress in the treatment of metastatic castration-resistant prostate cancer 
(Choudhury and Kantoff, 2012), the clinical benefit from molecularly targeted agents in CRPC other than for those that 
target androgen receptor signaling remains limited.  This is likely because our understanding of therapeutic targets in 
CRPC is incomplete and patients have not been successfully stratified for the likelihood of response to a given therapy.  
We have performed an unbiased in vivo functional genomic screen to identify genes that can confer androgen 
independence in a model of androgen-dependent prostate tumor formation, and discovered NEK6 as a novel mediator of 
castration resistance.  The NEK6 gene on 9q33.3 is located on a region of recurrent copy number gain in prostate cancer, 
and NEK6 amplification or overexpression in primary prostate cancer predicts for poor outcomes independent of grade.  
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NEK6 plays a mechanistic role in the development of castration resistance in our model, and turning off its expression in 
xenograft tumors where it is overexpressed restores sensitivity to castration, suggesting that its continued activity is 
required for tumor maintenance in this context.  These findings suggest NEK6 as a novel therapeutic target in patients 
with castration-resistance mediated by NEK6 activity. 

NEK6 has been previously described to be required for the mitotic progression of human cells (Yin et al., 2003), 
and would thus be implicated as an essential gene in proliferating cells.  However, a subsequent study (Nassirpour et al., 
2010) demonstrated that knocking down endogenous Nek6 levels or exogenous expression of the kinase-dead form in 
normal fibroblast cells did not inhibit cell proliferation or induce apoptosis. Thus, pharmacologic targeting of NEK6 
would be predicted to be toxic only to those cells with a specific dependency.  We have demonstrated that RPS6KB1 and 
SGK1 are in vivo substrates of NEK6, and identified novel substrates including FOXJ2, HUWE1 and NCOA5.   

Parallel growth factor signaling has been implicated in androgen independence in several model systems, but this 
phenotype depends on both the growth factor milieu of the microenvironment and the underlying genetic context of the 
cancer cells with regards to their behavior in this milieu.  The use of engineered cell lines allows control over the genetic 
context, and the use of xenografts allows testing different in vivo environments where the limiting nutrients and growth 
factors are unknown and thus could not be replicated in a culture environment.  The apparent biologic relevance of NEK6 
in human prostate cancer suggests the validity of the model system used in our original screen, though it is reasonable to 
consider that other genes might be identified to confer androgen independence in different genetic contexts in different 
microenvironments.  NEK6 activity is increased by growth factor stimulation in our experiments, and identification of the 
specific molecules involved would provide important insight into the role of the microenvironment in activating the 
NEK6 pathway. 

Alterations in the AR gene and in AR-mediated signaling have already been demonstrated to play a role in the 
development of castration resistance (Edwards and Bartlett, 2005a), and our initial screen identified several kinases that 
can confer androgen-independent tumor formation in our model system.  It is likely that in addition to these, genes in 
other families (transcription factors, epigenetic modifiers, non-coding RNAs) could also lead to castration resistance.  
Given the multitude of potential mechanisms for development of castration-resistant disease in human prostate cancer, 
targeting the resistant clone(s) requires understanding the operant mechanism(s) in a particular patient.  It is unclear at this 
point whether single molecular markers would be adequate for this purpose, or whether a combination of 
genetic/epigenetic, gene expression and/or phosphoproteomic features may be more informative (Choudhury, Eeles, et al., 
2012).  It is thus essential to collect tissue from patients with advanced PrCa to discover molecular features indicating 
activity of a particular gene/pathway, and to assess the utility of these features in predicting responses to targeted therapies 
in clinical trials. 
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Choudhury AD, Guney I, Schinzel AC, Izzo F, Stack EC, Nakabayashi M, Petrozziello G, Hahn WC. "Molecular Determinants 
of Hormone Refractory Prostate Cancer." 5th Annual Multi-institutional Prostate Cancer Program Retreat, March 19-21, 2012.  
Poster selected for presentation and awarded as a prize winner. 
 
Choudhury AD, Guney I, Schinzel AC, Izzo F, Stack EC, Nakabayashi M, Petrozziello G, Hahn WC. "Molecular Determinants 
of Hormone Refractory Prostate Cancer." Dana-Farber Cancer Institute Molecular and Cellular Oncology Department Retreat.  
April 9, 2012. 
 

Narrative Report (limit to 500 words) 
 

  
 
 

I have just completed my first year as Clinical Instructor in Medical Oncology at Dana-Farber Cancer Institute, and 
am completing my fourth year as a post-doctoral fellow in the laboratory of Dr. William Hahn.  I see patients one half day a 
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week in clinic, and approximately 90% of my time is devoted to basic science research.  The goal of my research project is to 
investigate molecular mechanisms of castration resistance in prostate cancer.  To this end, I have performed unbiased 
functional genomic screens to identify novel genes that can confer androgen independence in an in vivo model of androgen 
dependent prostate cancer.  I have identified two kinases, NEK6 and NLK, which robustly and reproducibly confer androgen-
independent tumor formation to androgen-dependent prostate cancer cells in vivo, and are thus likely to activate signaling 
pathways that are relevant for conferring castrate resistance in patients.  This research plan has earned me a Young Investigator 
Award from the Prostate Cancer Foundation and a Physician Scientist Training Award from the Department of Defense, while 
a poster presentation of my results was one of the prize winners at the 5th Annual Multi-institutional Prostate Cancer Program 
Retreat. 

 
My training program at Dana Farber Cancer Institute and my involvement with the Broad Institute of MIT and 

Harvard has me uniquely positioned to apply novel experimental approaches to address rapidly evolving clinical problems in 
prostate cancer.  During my clinical training, I have cared for many cancer patients with a variety of common and uncommon 
diagnoses.  I have thus developed an understanding of important clinical problems in medical oncology and areas of unmet 
clinical need from early in diagnosis to the end of life.  One such area of clinical need amenable to scientific inquiry is the 
development of castration resistance in metastatic prostate cancer, and this problem forms the basis of my current research 
interests. 

 
I have already helped facilitate collaborations between the clinical genitourinary oncology group at DFCI and the 

Broad Institute, specifically in identifying clinical samples being obtained through clinical trials being performed at DFCI that 
would be available for gene expression and next-generation sequencing studies at the Broad.  I have coordinated efforts at 
isolation and sequencing of circulating tumor cells from patients with prostate cancer, and I have also been collaborating with 
Dr. Cory Johannessen and others in bringing together various disparate experimental approaches and novel technologies to 
study mediators of resistance to therapy in prostate cancer with the goal of establishing a “Resistance Platform”.   

 
My career goal is to attain an independent academic faculty position that will allow me to spend 90% of my time 

pursuing independent laboratory investigations in prostate cancer, while seeing genitourinary cancer patients approximately 
one half day each week.  I hope to continue to study mediators of prostate cancer progression and resistance to therapy in order 
to discover novel targets for therapeutic intervention.  Eventually, I hope to be able to apply results of my laboratory research 
to translational studies and therapeutic clinical trial designs.   
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SUPPORTING DATA 
 
Figure 1.  NEK6 confers androgen-independent tumor formation in a xenograft model of androgen-dependent prostate 
cancer.  A.  Tumor formation at 60 days for parental LHSR-AR cells and cells expressing NEK6 in female and castrated 
mice.  B.  Inducible expression of NEK6 in vitro at 48 hours after addition of doxycycline. C.  Waterfall plot of change in 
tumor volume of parental LHSR-AR cells and cells with inducible NEK6 expression formed in male mice, 30 days after 
castration and removal of testosterone pellet.  D. Tumor formation in castrated male mice mediated by expression of wild-
type NEK6 (wt) and the following mutants: kinase dead (K74M/K75M), predicted constitutively active (Y108A), NEK9 
activation site mutant (S206A), and deletions of the amino acids indicated. 
 
Figure 2. NEK6 is overexpressed in several prostate cancer cell lines compared to immortalized (RWPE, LH) and 
transformed (LHSR-AR) prostate epithelial cells.  A. Expression of NEK6 and AR in prostate cell lines with Hsp90 as 
loading control 
 
Figure 3. NEK6 does not confer androgen-independent tumor formation through activation of AR.  A.  NEK6-mediated 
androgen-independent tumors are primarily squamous in histology and AR negative.  Sections of tumors derived from 
parental LHSR-AR cells expressing GFP in male mice, and cells expressing NEK6 in female and castrated mice were 
stained with AR antibody (brown).  B. Luciferase activity detected in LNCaP cells transiently transfected with an AR 
reporter either alone (top) or in combination with an expression plasmid for NEK6 (bottom) incubated with concentrations 
of the synthetic androgen R1881 indicated.  C.  Doxycycline-inducible expression of NEK6 wild-type, kinase dead 
(K74M/K75M), AKT1 and RAF1 both untagged and with C-terminal V5 tag.  Untagged versions were used for 
experiments described.  D.  Inducible expression of NEK6 does not increase expression of AR targets PSA or TMPRSS2 
in LHSR-AR cells.  Expression of TMPRSS2 and PSA were measured by qPCR in the absence and presence of 
doxycycline to induce transgene expression and in the presence and absence of R1881 as indicated, with expression 
normalized to cells transduced with NEK6 K74M/K75M in the absence of doxycycline and R1881.  E. NEK6 expression 
has neither a positive or negative effect on AR signaling as measured through published AR signatures.  Gene expression 
changes conferred by inducible expression of wild-type NEK6 vs. kinase dead NEK6 six hours after growth factor 
stimulation were assayed in 3 biological replicates, and GSEA was used to assess enrichment of signatures positively 
correlated with AR activity in two data sets from the literature (Hieronymus et al., 2006; Mendiratta et al., 2009). 
 
Figure 4.  NEK6 overexpression does not lead to promotion of cell cycle progression or antagonism of the p53 pathway in 
LHSR-AR cells.  A. Cell cycle profiles of cells with and without NEK6 overexpression.  LHSR-AR cells transduced with 
doxycycline-inducible NEK6 were cultured in the presence (bottom profiles) or absence (top profiles) of doxycycline, 
starved from growth factors for 24 hours, and released into growth factor-containing media for the times indicated, then 
harvested and fixed for propidium iodide staining in comparison to asynchronously cycling cells  B. Proliferation curves 
of LHSR-AR constitutively expressing lacZ or NEK6, average cell counts from 3 plates collected at the indicated time 
points plotted compared to previous time point with standard deviations. C. p53 pathway is inactive in LHSR-AR cells, 
and NEK6 expression does not rescue from cell death mediated by etoposide.  LHSR-AR cells with constitutive 
expression (pLX304-) of lacZ vs. NEK6 or doxycycline-inducible expression (pTRIPz-) of NEK6 kinase dead (kd) vs. 
wild-type (wt) were exposed to etoposide at concentrations indicated vs. DMSO as vehicle control.  Attached and floating 
cells were harvested and combined for immunoblotting.  
 
Figure 5.  Kinase signaling mediated by NEK6.  A. Overexpression of NEK6 leads to phosphorylation of published 
substrates RPS6KB1 and SGK1, with decreased phosphorylation of AKT1.  LHSR-AR cells with doxycycline-induced 
expression of NEK6 kinase-dead (kd) vs. wild-type (wt) were starved of growth factors for 24 hours, then stimulated with 
growth factor-containing media for the indicated periods of time and harvested.  B. NEK6 knockdown decreases 
RPS6KB1 and SGK1 phosphorylation in DU145 cells. DU145 cells with doxycycline-inducible expression of shRNAs 
targeting lacZ or NEK6 were starved of serum for 24 hours, then stimulated with growth factor-containing media for the 
indicated periods of time and harvested. C. NEK6 leads to similar downstream signaling as AKT1 with decrease in 
phosphorylation of AKT1 itself.  LHSR-AR cells with doxycycline-inducible expression of NEK6 wt, NEK6 kd, AKT1 
and RAF1 were starved of growth factors for 24 hours, then stimulated with growth factor-containing media for 1 hour.  
Cell lysates were incubated with R&D Systems Phospho-Kinase Array, and mean intensity of dots in duplicate were 
compared to NEK6 kd as control.  46 phosphorylation events were assayed; events that increased or decreased in intensity 
more than 1.5-fold in the comparisons of NEK6 wt (blue bars), AKT1 (yellow bars) and RAF1 (purple bars) vs. control 
are plotted (fewer events are plotted for RAF1 as fewer events met the fold-change thresholds described). 
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Figure 6. A. NEK6 overexpression increases phosphorylation of certain proteins with MAPK/CDK, AKT/RSK motifs.   
LHSR-AR cells with doxycycline-induced expression of NEK6 kinase-dead (kd) vs. wild-type (wt) were starved of 
growth factors for 24 hours, then stimulated with growth factor-containing media for the indicated periods of time and 
harvested; lysates were immunoblotted with the indicated motif-specific antibodies.  Green arrows indicate 
phosphoproteins increased in intensity with expression of wild-type vs. kinase dead NEK6. B. NEK6 can phosphorylate 
NCOA5 and FOXJ2 in vitro at the sites discovered in the phosphoproteomic screen.  293T cells were transfected with 
expression constructs for wild-type and mutant (S-to-D) versions of NCOA5 or FOXJ2 with a C-terminal V5 tag and 
immunoprecipitated with anti-V5 antibody.  Eluates from 1/5 of the beads were assayed by V5 immunoblot; the 
remaining 4/5 was subjected to on-bead in vitro kinase assay with recombinant active GST-NEK6 (Sigma). 
 
Figure 7.  Requirement of NEK6 substrates for NEK6-mediated androgen-independent tumor formation.  A. Inducible 
knockdown of NEK6 substrates as assayed by qPCR in LHSR-AR cells constitutively expressing NEK6 with 
doxycycline-inducible expression of shRNAs; average of 2 replicates shown.  B. Tumor formation in female mice of cells 
assayed in A.  
 
Figure 8.  NEK6 expression does not correlate with grade.  Tumor microarrays representing 244 cases of primary 
localized prostate cancer, 215 of which were evaluable and 208 with clinical follow-up were stained with NEK6 antibody 
for immunohistochemistry and analyzed by CRi spectral imager.  Representative images from tumor microarrays 
demonstrating: A,B: high NEK6, low grade. C,D: high NEK6, high grade. E,F: low NEK6, low grade. G,H: low NEK6, 
high grade. 
 
Figure 9.  NEK6 overexpression is correlated with inferior relapse-free survival, more metastasis and castration-resistant 
disease.  A.  Contingency tables representing proportion of NEK6 high patients (n=40) and NEK6 low patients (n=168) 
with different Gleason grades, recurrent vs. non-recurrent disease, metastatic vs. non-metastatic disease, and hormone-
refractory vs. sensitive disease during clinical follow-up.  B. Kaplan-Meier curve of biochemical relapse-free survival of 
NEK6 high (blue) vs. NEK6 low (red) groups in tumor microarray studies.  C. Kaplan-Meier curve of disease free 
survival in NEK6 overexpressed (relative mRNA expression >2.0) or amplified (red) vs. other cases (blue) in preliminary 
TCGA data set. 
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Supplemental Table 1. 

    AR Nuclear % 
score (0,1,2,3,4)a 

AR Nuclear 
intensityb 

AR % 
Cytoplasm score 

(0,1,2,3,4)a 

AR Cytoplasm 
intensityb notes 

Male mice 
(positive 
control) 

GFP 1 (one 
piece) 4 m s 3 w m 9.11.12 

  GFP 1 (second 
piece)  3 w m s 1 w   

  GFP 2 4 m s 1 w   

  GFP3 4 s 4 m s   

Female 
mice 

NEK6 1 (one 
piece) 2 m s 2 w m   

  NEK6 2 (few 
pieces) 1 w 1 w   

  NEK6 3 trace 

most nuclei are 
neg; occasional 

nuclei show weak 
staining (<1-2%) 

trace 

most cytoplasm 
are neg; 

occasional cells 
show weak 

staining (<1-2%) 

surface mouse 
skin is neg for AR 

  AKT1 2 m s 3 w m s   

  CCL2 0 (very small 
sample) 0 0 (very small 

sample) 0 scant epithelial 
cells 

  ERBB2 2 w m s 2 w m   

  KRASV12 1 
(one piece) 0   0     

  KRASV12   2 (2 
other pieces) 1 m s 2 w m   

  MEKDD 1 w 4 w m s   

  PIM1 <5% w (rare strong, 3-
4 cells) 2 m s   

  RAF1 1 w m 4 w m 

two pieces show 
this staining 
pattern; third 

piece has weak 
cyto stain in 
<25%, and 

nuclear stain 
weak in <25%. 

Castrated 
mice NEK6 castr 

most are neg; 
however, one 

tissue fragment 
shows up to 3+ 

Nuc score in 
~25% of nuclei 

0-3       

aAR % score: 0, 1(1-25%),2(25-50%), 3(50-75%), 4(75-100%) 
b Intensity: w=Weak, m=Moderate, s=Strong (bold indicates predominant intensity) 
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Supplemental Table 2. 

Gene Name Site 
q enriched (wt 

vs. kd) 

q enriched   (wt 
induced vs. 
uninduced) modifiedsequence_localization 

LIMCH1 S303 9.73E-64 1.72E-102 _SWSTATS(ph)PLGGERPFR_7 

DROSHA S357 7.81E-32 2.87E-68 _NTDSWAPPLEIVNHRS(ph)PS(ph)REK_18 

FOXJ2 S8 4.12E-18 2.22E-06 _(ac)ASDLESS(ph)LTSIDWLPQLTLR_7 

FOXO3 S7 1.06E-17 4.06E-54 _(ac)AEAPAS(ph)PAPLSPLEVELDPEFEPQSRPR_6 

HUWE1 S2595 7.84E-13 1.09E-09 _LLGPSAAADILQLSSS(ph)LPLQSR_16 

EPPK1 S1529 4.20E-12 2.03E-06 _QVS(ph)ARDLFR_3 

COIL S487 6.79E-12 1.13E-13 _KIDS(ph)PPIRR_4 

SRGAP1 S932 6.79E-12 1.21E-25 _LLELTS(ph)SYSPDVSDYKEGR_7 

SLC2A12 S244 6.95E-11 2.89E-05 _LRALS(ph)DTTEELTVIK_5 

TRPS1 S843 2.12E-09 3.99E-13 _TLRDS(ph)PNVEAAHLARPIYGLAVETK_5 

MTX1 S9 4.78E-06 3.80E-03 _(ac)MLLGGPPRS(ph)PR_9 

OGFR S349 9.83E-06 9.02E-07 _S(ph)VEPQDAGPLER_1 

INTS3 S502 5.00E-05 2.61E-06 _FPEFCSSPS(ph)PPVEVK_9 

TRA2B S239 7.67E-05 3.27E-03 _S(ph)YRGGGGGGGGWR_1 

LMO7 S926 9.02E-05 5.17E-02 _GISS(ph)LPR_4 

SATB2 S20 9.20E-05 5.42E-02 _SGS(ph)PDVKGPPPVK_3 

ATM T1885 1.32E-04 1.83E-02 _STT(ph)PANLDSESEHFFR_3 

PLEKHA6 S313 3.42E-04 2.86E-06 _KSS(ph)MNQLQQWVNLRR_3 

LMO7 S895 3.62E-04 2.13E-01 _VSAS(ph)LPR_4 

PAK6 S246 4.80E-04 8.11E-07 _HGSEEARPQSCLVGSATGRPGGEGS(ph)PS(ph)PK_25 

HNRNPM S633 6.05E-04 3.70E-04 _GNFGGS(ph)FAGSFGGAGGHAPGVAR_6 

MLLT3 S302 2.20E-03 9.42E-02 _KKS(ph)SSEALFK_3 

HNRNPA2B1 S324 2.41E-03 5.43E-03 _SGNFGGS(ph)RNMGGPYGGGNYGPGGSGGSGGYGGR_7 

NCOA5 S96 2.52E-03 1.18E-01 _DLRDS(ph)RDFR_5 

SETX T2474 2.53E-03 1.92E-01 _SLT(ph)HPPTIAPEGSRPQGGLPSSKLDSGFAK_3 

BCL6 S466 2.65E-03 2.40E-01 _SSSESHS(ph)PLYMHPPK_7 

ATXN1 S811 2.94E-03 1.27E-03 _ICIEGRS(ph)NVGK_7 

CDKN2AIP S151 3.23E-03 1.47E-01 _VIEGKNS(ph)SAVEQDHAK_7 

FAM21C S288 3.49E-03 1.82E-01 _S(ph)RPTS(ph)FADELAAR_5 

EPS8L1 T305 5.41E-03 3.80E-02 _AAGEGLLT(ph)LR_8 

FOXA1 S307 5.42E-03 1.00E-01 _KDPSGASNPSADS(ph)PLHR_13 

KLF4 T316 6.40E-03 6.99E-05 _TT(ph)PTLGLEEVLSSR_2 

LMO7 S1593 6.56E-03 1.32E-02 _SHS(ph)PSASQSGSQLR_3 

ZNF326 S131 8.20E-03 1.57E-01 _NQGGSS(ph)WEAPYSR_6 

PLEKHG6 S645 2.05E-02 1.29E-02 _S(ph)APELPEGILK_1 

RIPK3 S316 3.04E-02 1.70E-03 _RFS(ph)IPESGQGGTEMDGFRR_3 

ZNF326 S106 3.98E-02 9.73E-09 _FGGS(ph)YGGRFESSYR_4 

ERCC5 S156 4.94E-02 1.03E-01 _ENDLYVLPPLQEEEKHS(ph)S(ph)EEEDEKEWQER_17 

ERCC5 S157 4.94E-02 1.03E-01 _ENDLYVLPPLQEEEKHS(ph)S(ph)EEEDEKEWQER_18 

LIG1 S66 5.02E-02 9.97E-02 _VLGS(ph)EGEEEDEALS(ph)PAK_4 

MYOF S193 5.29E-02 9.46E-04 _RMLS(ph)NKPQDFQIR_4 

ZDHHC18 S19 6.19E-02 1.13E-07 _(ac)MKDCEYQQISPGAAPLPAS(ph)PGAR_19 

PBRM1 S353 6.53E-02 1.45E-09 _LSAITM(ox)ALQYGS(ph)ES(ph)EEDAALAAAR_12 
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EXPH5 S1444 7.11E-02 3.82E-02 _RSS(ph)WECTGSGR_3 

SIPA1L3 S158 7.11E-02 5.33E-07 _SKDVEFQDGWPRS(ph)PGR_13 

ATXN1 S238 7.85E-02 9.85E-02 _APGLITPGS(ph)PPPAQQNQYVHIS(ph)SSPQNTGR_9 

KRT18 S323 8.16E-02 1.44E-01 _NLKASLENS(ph)LREVEAR_9 

IRF2BP1 S453 9.61E-02 4.17E-02 _NVAEALGHSPKDPGGGGGPVRAGGAS(ph)PAASSTAQPPTQHR_26 

DLG3 Y673 1.01E-01 1.62E-01 _RDNEVDGQDY(ph)HFVVSR_10 

ATXN1 S775 1.02E-01 7.46E-03 _WS(ph)APESR_2 

EXPH5 S341 1.12E-01 3.01E-02 _S(ph)LHFPATTQSK_1 

RFX2 S28 1.27E-01 2.98E-02 _(ac)MQNSEGGADSPASVALRPSAAAPPVPAS(ph)PQR_28 

PCYT1B S315 1.59E-01 3.42E-02 _M(ox)LQALS(ph)PK_6 

EPS8L1 T202 1.61E-01 2.35E-01 _AVIST(ph)VER_5 

HIVEP2 S2300 1.81E-01 3.82E-02 _RGPHALQSSGPPSTPS(ph)SPR_17 

ZNF608 S964 1.96E-01 4.92E-05 _SKASS(ph)PSDIISSKDSVVK_5 

KLF3 S71 2.08E-01 2.39E-23 _S(ph)SPPSAGNSPSSLKFPSSHRR_2 

ACLY S481 2.24E-01 2.45E-04 _KAKPAMPQDSVPS(ph)PR_13 

ZNF608 S1453 2.31E-01 4.83E-07 _DRHS(ph)PFGQR_4 
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